Convergence of an Alternating Maximization Procedure
نویسندگان
چکیده
We derive two convergence results for a sequential alternating maximization procedure to approximate the maximizer of random functionals such as the realized log likelihood in MLE estimation. We manage to show that the sequence attains the same deviation properties as shown for the profile M-estimator by Andresen and Spokoiny (2013), that means a finite sample Wilks and Fisher theorem. Further under slightly stronger smoothness constraints on the random functional we can show nearly linear convergence to the global maximizer if the starting point for the procedure is well chosen.
منابع مشابه
An inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملStatistica Sinica 5(1995), 41-54 CONVERGENCE IN NORM FOR ALTERNATING EXPECTATION-MAXIMIZATION (EM) TYPE ALGORITHMS
We provide a su cient condition for convergence of a general class of alternating estimation-maximization (EM) type continuous-parameter estimation algorithms with respect to a given norm. This class includes EM, penalized EM, Green's OSL-EM, and other approximate EM algorithms. The convergence analysis can be extended to include alternating coordinate-maximization EM algorithms such as Meng an...
متن کاملSpace-Alternating Generalized Expectation-Maximization Algorithm
The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all paramete...
متن کاملSpace - Alternating Generalized Expectation - Maximization AlgorithmJe rey
| The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all parame...
متن کاملSpace-alternating generalized expectation-maximization algorithm
The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 17 شماره
صفحات -
تاریخ انتشار 2016